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Abstract
We study mean-field percolation with freezing. Specifically, we consider
cluster formation via two competing processes: irreversible aggregation and
freezing. We find that when the freezing rate exceeds a certain threshold,
the percolation transition is suppressed. Below this threshold, the system
undergoes a series of percolation transitions with multiple giant clusters (‘gels’)
formed. Giant clusters are not self-averaging as their total number and their
sizes fluctuate from realization to realization. The size distribution Fk , of
frozen clusters of size k, has a universal tail, Fk ∼ k−3. We propose freezing
as a practical mechanism for controlling the gel size.

PACS numbers: 82.70.Gg, 02.50.Ey, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

Percolation was originally discovered in the context of polymerization and gelation [1, 2]
and since, it has found numerous applications in physics [3], geophysics [4], chemistry [5]
and biology [6]. It plays an important role in a vast array of natural and artificial processes
ranging from flow in porous media [7] and cloud formation [8, 9] to evolution of random graphs
[10, 11], combinatorial optimization [12], algorithmic complexity [13], amorphous computing
and DNA computing using self-assembly [14].

We study mean-field percolation using the framework of aggregation. An aggregation
process typically begins with a huge number of molecular units (‘monomers’) that join
irreversibly to form clusters (‘polymers’). At some time, a giant cluster (‘gel’) containing a
finite fraction of the monomers in the system is born, and it grows to engulf the entire system.
In this classic percolation picture only a single gel forms, but in many natural and artificial
processes the system freezes into a non-trivial final state with multiple gels or even micro-gels
[15, 16]. In this study, we show that aggregation with freezing naturally leads to formation of
multiple gels and that freezing is a useful mechanism for controlling the gel size.
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We analyse a process of aggregation with freezing where there are two types of clusters:
active and frozen. Active clusters join by binary aggregation into larger active clusters. The
aggregation rate is proportional to the product of the two cluster sizes [8, 17, 18]; this is
equivalent to the gelation model of Flory and Stockmayer where a chemical bond between
two monomers joins their respective polymers [1, 2]. In parallel, all active clusters including
the gel may become frozen at a size-independent constant rate α. Frozen clusters and frozen
gels are passive: they do not interact with other (active or passive) clusters.

This process is studied using the rate equation approach. The density ck(t) of active
clusters of mass k at time t (that is, made up from k monomers) satisfies

dck

dt
= 1

2

∑
i+j=k

(ici)(jcj ) − mkck − αck, (1)

with m(t) the mass density of active clusters. The first two terms on the right-hand side describe
how the cluster size distribution changes due to aggregation, and the last term accounts for
loss due to freezing. The quantity m(t) equals the mass density of all active clusters including
possibly a giant cluster. When there is no active giant cluster, m(t) ≡ M1(t) with the moments
defined via Mn(t) ≡ 〈kn〉 = ∑

k�1 knck(t).

The gelation transition. Initially, all clusters are finite in size, so m = M1. The moments Mn

provide a useful probe of the dynamics. From the governing equation (1), the second moment
of the size distribution M2 obeys the closed equation dM2/dt = M2(M2 − α) and thus,

M2(t) = α

[(
α

αc

− 1

)
eαt + 1

]−1

. (2)

There is a critical freezing rate αc = M2(0). For fast freezing, α � αc, the second moment is
always finite indicating that clusters remain finite at all times. In this case, there is no gelation.
For slow freezing, α < αc, there is a finite time singularity indicating that an infinite cluster,
the gel, emerges in a finite time3. This gelation time is

tg = − 1

α
ln

(
1 − α

αc

)
. (3)

The gelation point marks two phases. Prior to the gelation point, the system contains only
finite clusters that undergo cluster–cluster aggregation (‘coagulation phase’). Past the gelation
point, the gel grows via cluster–gel aggregation (‘gelation phase’). We analyse these two
phases in order.

Coagulation phase. Coagulation occurs for α � αc at all times or for α < αc when t < tg .
From (1), the mass density of active clusters satisfies dm/dt = −αm, and thus, ordinary
exponential decay occurs,

m(t) = m(0) e−αt . (4)

For concreteness, we consider the monodisperse initial conditions ck(0) = δk,1. In this case
Mn(0) = 1 and consequently, αc = 1. The cluster size distribution is obtained using the
standard transformation [19–21], ck = e−αtCk , and the modified time variable τ = ∫ t

0 dt ′ e−αt ′

or explicitly

τ = 1 − e−αt

α
. (5)

This time variable increases monotonically with the physical time and reaches τ → 1/α

as t → ∞. With these transformations, equation (1) reduces to the no-freezing case
dCk/dτ = 1

2

∑
i+j=k(iCi)(jCj ) − kCk . From the well-known solution of this equation

3 In a finite system, the gels contains a finite fraction of the system mass.
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Figure 1. The total mass, the sol mass and the gel mass versus modified time τ for α = 1/2.
These curves hold as long as the gel remains active.

[22, 23], the cluster-size distribution is

ck(t) = kk−2

k!
τ k−1 e−kτ−αt . (6)

Generally, the size distribution decays exponentially at large sizes and the typical cluster size
is finite. The gelation time (3) is simply τg = 1. Of course, no gelation occurs when α > 1
because τ < 1/α < 1. The gelation point is marked by an algebraic divergence of the size
distribution ck ∼ (1 − α)k−5/2 for large k. We note that the mass density decreases linearly
with the modified time, m = 1 − ατ , and that m(τg) = 1 − α.

Gelation phase. Past the gelation transition, a giant cluster containing a finite fraction of the
mass in the system forms. In addition to cluster–cluster aggregation, cluster–gel aggregation
takes place with the giant cluster growing at the expense of finite clusters. In parallel, all
clusters including the gel may freeze.

Formally, the size distribution (6) generalizes to

ck(t) = kk−2

k!
τ k−1 e−ku−αt (7)

with u(t) = ∫ t

0 dt ′m(t ′) yet to be determined. Statistical properties of the size distribution are
derived from the generating function c(z, t) = ∑

k�1 kck(t) ekz that equals

c(z, t) = τ−1 e−αtG(z + ln τ − u) (8)

where G(z) = ∑
k�1

kk−1

k! ekz is the ‘tree’ function [24].
During the gelation phase, active clusters consist of finite clusters, the ‘sol’, with mass s,

and the gel with mass g with the total mass density, m = s + g, and these masses are coupled
via the evolution equations

dm

dt
= −αs, (9a)

ds

dt
= − s(m − s)

1 − sτ eαt
− αs. (9b)

The equation governing the total mass reflects that as long as the gel is active, loss is due
to freezing of finite clusters and the equation for the sol mass follows from ds/dt =
−gM2 − αM1, obtained by summing (1). To convert this equation into the explicit



L420 Letter to the Editor

0 0.2 0.4 0.6 0.8 1
α

0

0.2

0.4

0.6

0.8

1

g
max

P
mult

Figure 2. The maximal gel size gmax and the probability of producing multiple gels Pmult versus
the freezing rate α.

equation (9b), the first two moments are M1 = s and M2 = cz(z = 0) = s/(1 − sτ eαt )

where the identity G′(z) = G/(1 − G) [25] was employed.
Equations (9a) and (9b) are subject to the initial conditions m(tg) = s(tg) = 1 − α.

Once the masses are found, the formal solution (7) becomes explicit. Results of numerical
integration of equations (9a) and (9b) are shown in figure 1.

Clearly, the longer the gel remains active, the larger it grows, but its size cannot exceed
gmax = limt→∞ g(t) with the obvious bound gmax < 1 − α (figure 2). Furthermore, an
involved perturbation analysis [26] of equations (9a) and (9b) yields

gmax →



1 − π2

6
α α ↓ 0,

C(1 − α)2 α ↑ 1;
(10)

with C = 1.303 892. The quadratic dependence on the freezing rate implies that the emerging
gel is very small when α ↑ αc. Thus, micro-gels, that may be practically indistinguishable
from large clusters, emerge. We conclude that freezing can be used to control the gel size, as
gels of arbitrarily small size can be produced using freezing rates just below criticality.

Multiple giant clusters. At any time during the gelation phase, the gel itself may freeze. This
freezing process is random: the gel lifetime T is an exponentially distributed random variable,
P(T ) = αe−αT . Until the gel freezes, the system evolves deterministically, so the mass of the
frozen gel is g(tg + T ). When the gel freezes, the total active mass m(t) is discontinuous: it
exhibits a downward jump (figure 3). Given that the duration of the gelation phase is governed
by a random process, the mass of the frozen gel is also random. It fluctuates from realization
to realization, i.e., it is not a self-averaging quantity.

When the gel freezes, the system re-enters the coagulation phase because all remaining
clusters are finite. The initial conditions are dictated by the duration of the preceding gelation
phase and are therefore also stochastic. Nevertheless, once the initial state is set, the evolution
in the coagulation phase is deterministic. The gel is frozen so it no longer affects the evolution
and only cluster–cluster aggregation occurs. Let us assume that the gel freezes at time tf .
Resetting time to zero, the first and the second moments are simply given by equations (4) and
(2), respectively, with Mn(0) replaced by Mn(tf ). A second gelation occurs if the freezing
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Figure 3. The mass density m versus time τ . Shown are results of a Monte Carlo simulation with
system size N = 105 and freezing rate α = 0.1. The system alternates between the coagulation
phase and the gelation phase. In the former phase the mass decreases linearly according to (4)
such that depletion occurs at time τ = 1/α. In the latter phase, the active mass decreases slower
than linear according to (9a) and (9b). The gelation phase ends when the gel freezes.

rate is sufficiently small, α < M2(tf ). Otherwise, the system remains in the coagulation phase
forever.

Because M2 diverges at the gelation point, there is a time window past the gelation time
where the second moment exceeds the freezing rate. If the gel freezes during this window,
another percolation transition is bound to occur. Therefore, there is no upper bound to the
number of frozen gels that may possibly form. Quantitatively, the probability that a successive
gelation occurs is Pmult = ∫ t∗−tg

0 dT P (T ) with M2(t∗) = α (figure 2); it can be obtained using
perturbation analysis [26]

Pmult →



α ln
1

eα
α ↓ 0,

0.450 851 α ↑ 1.

(11)

In general, this probability is substantial and remarkably, it is discontinuous at αc.

Cyclic dynamics. The general picture is now clear: the process starts and ends in coagulation
and throughout the evolution, the system alternates between coagulation and gelation. Once
the initial conditions are set, the behaviour throughout the coagulation phase and throughout
the gelation phase are both deterministic. Each gelation phase ends with freezing of the active
gel. Since the duration of the gelation phase is random, the size of the giant clusters, and
the number of giant clusters are both random variables. Generically, the system exhibits a
series of percolation transitions, each producing a frozen gel, so that overall, multiple gels are
produced. The random freezing process governs the number of percolation transitions as well
as the size of the frozen gels.

Monte Carlo simulation of the stochastic process of aggregation with freezing confirms
this picture (figure 3). In the simulations, we keep track the total aggregation rate
Ra = N

(
M2

1 − M2
)/

2 and the total freezing rate Rf = αNM0, where N is the number
of particles. Aggregation occurs with probability Ra/(Ra + Rf ), and freezing occurs with the
complementary probability. A cluster is chosen for aggregation with probability proportional
to its size. Time is augmented by �t = 1/(Ra + Rf ) after each aggregation or freezing event.

Frozen clusters. The density of frozen clusters Fk is found from dFk/dt = αck . By integrating
equation (6), we find the density Fk(tg) of clusters produced during the first coagulation
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Figure 4. The size distribution of the frozen clusters for α = 1/2. The simulation results represent
an average over 102 independent realizations in a system of size N = 106.

phase (tg ≡ ∞ for α > 1)

Fk(tg) =




α

k2 · k!
γ (k, k) α � 1,

α

k2 · k!
γ (k, k/α) α � 1;

(12)

where γ (n, x) = ∫ x

0 dy yn−1 e−y is the incomplete gamma function. When α � 1, this
quantity equals the final density of frozen clusters, Fk(∞) = Fk(tg), and at large sizes, the
behaviour is as follows

Fk(∞) �



1

2
k−3 α = 1,

A(α)k−7/2 exp[−B(α)k] α > 1;
(13)

where A = (2π)−1/2α2/(α − 1) and B = α−1 + ln α − 1.
For the case α < 1, numerical simulations provide convincing evidence that the tail

behaviour

Fk(∞) ∼ k−3, α < 1 (14)

is universal (figure 4). Indeed, equation (12) shows that the first coagulation phase contributes
Fk(tg) � α

2 k−3 to Fk(∞) and similarly, each successive coagulation phase should contribute
the very same k−3 to the tail. Because large clusters quickly merge into the gel, the gelation
phase yields a negligible contribution, and we conclude that freezing leads to an additional
non-trivial critical exponent γ = 3.

In summary, freezing results in a rich and interesting phenomenology that includes
multiple percolation transitions and multiple gels, microgels that may be indistinguishable from
finite clusters, cyclic evolution with the system constantly alternating between coagulation and
gelation, lack of self-averaging, and an additional non-trivial critical exponent.

Freezing also provides a practical mechanism for controlling gelation. It may be used to
engineer micro-gels of desired size by implementing variable freezing rates. Slow freezing
followed by rapid freezing can be used to produce gels of prescribed size, while near-critical
freezing produces micro-gels of arbitrarily small size.

There are a number of interesting potential generalizations of the present work. One may
consider situations with different freezing mechanisms [21], particularly for finite and infinite
clusters. We also solved the Stockmayer version [2, 27] where m = M1 always; in this case,
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there is no breakdown of self-averaging and the final density of frozen clusters mimics the
critical behaviour of active clusters, Fk ∼ k−5/2. Another natural generalization is percolation
in finite dimensions where the final distribution of frozen clusters should be an interesting
probe of the dynamics.
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